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Abstract

The main contribution of this paper is to put stability requirements for convergence of direct adaptive
periodic controllers on equal footing with requirements for indirect adaptive periodic control, as set
forth by Lozano [20]. The resulting stability condition is simply that the plant order is known *
priori. No other prior plant knowledge is used (e.g., relative degree, high-frequency gain, etc.), and
pmsistent excitation is not required. More importantly, no assumption or knowledge is required as to
whether the plant is minimum or nonminimum phaae. A numerical example is given to demonstrate
the method, and some guidelines are given for improving the adaptive transient response.

1 INTRODUCTION

An intriguing property associated with generalized sampling mechanisms is their ability to relocate
transmission zeros of the plant. The potential benefit of sampling for zero relocation was noted
in the paper by Astrom, Hagander and Sternby [3]. Subsequent research investigated applications
of generalized sampling mechanisms to such problems as robust control, simultaneous stabilization,
sensitivity minimization, and zero placement, cf., [11][12][18][19].

Generalized sampling can take many different forms, e.g., multirate sampling, periodic control,
generalized sample-and-hold, etc. Most approaches have an interpretation as a mathematical “lift-
ing” where a serial to parallel conversion is performed on the plant input and output signals, and
mappings are considered between the vectorized quantities.

In Lozano [20] an important lifting was introduced for which the transmission zeros are located
at the origin, Such liftings  are denoted here as zero annihilation (ZA) liftings.  General conditions
characterizing the ZA property can be found in Flayard [6], along with several eriended  horizon
lifting versions which satisfy the ZA conditions. Extended horizon liftings  have the advantage of
reducing required control torque and the size of the transient response, and have been applied to
problems in optical instrument pointing [9], and structural vibration damping [8].

The transmission zeros of the ZA lifted plant are at the origin regardless of whether the original
plant is minimum or nonminimurn  phase. This is important since it provida  a means by which a
nonminimum  phase plant can be “transformed” into a minimum phase lifted plant. In light of this
property, it is not surprising that several stable adaptive control approaches for nonminimum phase
systems have been developed based on such liftings  [5] [20] [22] [25].

Of particular interest are the adaptive controllers clf Lozano [20] [21] [22]. These adaptive con-
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trcJlers  are of the indirect type, i.e., the plant parameters are estimated first, and are then used to
compute the control gains. A main r~ult of Lozano is that only the plant order is required to be
known to establish etability.

‘The present paper will consider direct adaptive control for the same class of liftings.  The main
contribution of this paper is to put stability requirements for convergence of direct adaptive periodic
controllers on equal footing with requirements for indirect adaptive periodic control, i.e., that the
plant order is known a-priori. No prior knowledge of the plant relative degree or high-frequency gain
is used, and persistent excitation is not required. More importantly, no assumption or knowledge is
required as to whether the plant is minimum or nonminimum  phase.

2 BACKGROUND

The lifting of Lozano is briefly reviewed [20]. Consider the single-input single-output state-space
realization,

Z(t -t 1) = Az(t)  + Eu(t) (1)

y(t) = ?Tz(t) (2)

where z E Rn is the state vector, u and y are the scalar plant input and output, respectively, and-. .
A, b, 5 are system matricea  of appropriate dimerwione.

Then it is shown in Lozano [20], that the plant input and output in (l)(2) satisfy,

Y(t  + 2n) = AY(t) + H“U(t + n) -t l{ I!.J(t)  + H’U(t – n)

where,
W(t) = [u(t) ,..,, u(t-t n- 1 ) ]

Y?(t+ n) = [y(i),..., y(t+ n - 1)]

(3)

CT b
“.

~ #’Aw-2b , cTb O j

(4)

(5)

(6)

(7)

(8)

(9)

and (9 is the system observability matrix and C is the system reachability matrix. Let vk denote U
at timet= 2kn,  k =0, l,..., and enforce (by design) the constraint,

U(t-n)=O for t=2kn (lo)

Furthermore, let yk denote Y(t -t- 2n) at time t = 2kn,  k = 0,1,... . This notation definea a lifting
whose sampling structure is shown in Fig. 1. As seen in the figure, (10) forces the input to be zero
every alternate window of length n. It is shown by Lozano that using (10), model (3) can be written
as,

yk = AYk.~  q HUk (11)

As shown in Fig. 1, the output is controlled in alternate windows, which are staggered in time with
respect to the nonzero input window6.
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Figurel:  Mechanization of lifting.

It is emphasized that any controllable and observable linear tirne-invarian tplant (l)(2) can be
lifted into the form (11) using only knowledge of its plant order [20]. llrthermore,  the nonsin-
gularity  of the leading coefficient Ii is ensured simply by the reachability and observability of the
original (unlifted)  plant and does not depend on whether the true (unlifted)  plant is minimum or
nonminimum-phase.

The discussion will focus on developing a stable adaptive law for (1 1).

A rearrangement of (11) givw the equivalent plant reprmentation,

Linear Control Form
Vk = Kyk.~ + I.yk = @rk (12)

where,
K= - H- lA ;  L= H-l (13)

e= [K I L];  rk = [Yk?:l { Y:]~ (14)

Representation (12) is said to be in Linear Control Form  (cf., Goodwin and Sin [15]) since the
input control is written as a linear function of observed signals, One important advantage of this
parametrization is that a deadbeat controller can be written directly in terms of the gains K and L
as follows,

Deadbeat Control
U; = Kyk.] + LY~ =- ~rf (15)

r’f = [Y:l l(Y:)q~ (16)

where Y: is a specified trajectory to be tracked by Y., Hence, it iR only necessary to estimate K
ancl L in (12) and then “copy” the estimatex  for implementing the deadbeat control (15).

Lozano has developed several adaptive control approach~  [20] [22] [21], based on the represent-
tion (11). Lozano% approaches are ‘(indirect” in the sense that the plant parameters A and H are
firsl estimated from (11) and then used to compute the control gains K and L in (15) using the
formulas in (13) (note that only K is required for adaptive regulation). From (13) it is seen that this
requires a numerical inversion of the estimate of H each iteration. In order to ensure invertibility of
this estimate, Loza.no introduw  a modification in [20] based on a polar decomposition.

In contrast to Lozano’s approach, the preacnt  paper will focus on a “direct” adaptive scheme.
In a direct scheme, the gains K and L in control law (15) are estimated directly from the plant
representation (12). Earlier stable direct adaptation schema have been developed for periodic
control in Ortega [25] and Bayard  [5]. The present direct adaptive approach is similar to those in
[25][5], except that the Recursive Least Squares (RLS) algorithm will be used rather than simple
normalized projection, and tuning will be breed on minimization of the input error rather than the
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output error. The advantage of thi8 approach i8 that only knowledge of the plant  order is required
for stability, i.e., the requirements for prior partial Markov parameter information in Bayard [5] and
Cauchy Index constraints in Ortega [25] have been relaxed.

An added benefit of direct adaptive control is that numerical inversion of the extimate  H of H
is avoided. However, even though R is not inverted, its nonsingularity  is still required to ensure
adaptive stability. Hence, the polar decomposition introduced by Lozano will be needed to complete
the. stability proof.

Several simulation studies indicating the performance advantagea (i.e., bounds on transient re-
spcmBe,  convergence time, etc.), of using a direct adaptive approach with RLS adaptation can be
found in Jakubowski  et. al., [16][17]. However, these earlier studies were conducted without any
mechanism to ensure stability, and several counterexarnples  to convergence presently exist. Com-
pared to [16][17], the present paper introduces several modiflcatiorm  to ensure stability, and to
provide a theoretical framework for using this clam of algorithms.

3 STABLE ADAPTIVE CONTROL

,In this Bection, a stable direct adaptive controller is defined for the plant lifting (1 1).

3 . 1  I n p u t  P r e d i c t i o n  E r r o r

Given an estimate ~k_l of@ available at time k, one can conBtruct the input prediction,

v; = ~&-lrk (17)

and the associated input prediction error,

3 ,2 Normalized Signals

For adaptation purposes, it is useful to define the following normalized quantiti~,

(20)

where the normalization factor is defined by,

qk  =  Tk(llyk!{  +  Ityk- 111) (21)

and upper and lower bounds are 8pecified  on ~k,

~~q&~~>O (22)

Dividing through by 1 + 9& in (18) defin~ the normalized prediction error equation,

~k e @&.~f& (23)
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3,3  A d a p t a t i o n  A l g o r i t h m

Fquation  (23) is a linear-in-the-parameter error expression for which many adaptation methods
apply. The discussion here will focus on the Matrix Parameter Recursive Least Squares (MF’-RLS)
algorithm,

MP-RLS Adaptation Algorithm

(24)

(25)

An adaptive control law is defined by replacing Q in (15) by its estimate, i.e.,

‘I’his control law is for discussion purposw  only and will be modified subsequently.

Let the output tracking error be defined w,

It is shown in Appendix B (see also [7]), that the MP-RLS algorithm satisfia the following properties,

1’1:

1’2:

P 3 :

1’4:

P5:

P6:

P7:

Pa:

1’9:

3.4 Adaptive Control Law - Discussion

(26)

&k=yk-ykd (27)

Using adaptive control law (26) and the MP-RLS  estimator, the output tracking error is related to
the input prediction error as follows,

(28)

(29)
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where the normalized tracking error is defined as

$k = T;:k (30)

Wmark 1 For control purposes, it is desired for the output tracking error to converge to zero.
Given that ~k &oea to zero by property I’4 of the Wtimator,  it is clear from (29) that && will also
go to zero if E(Lk-1)  is pounded  away from zero. Unfortunately, while the true gain L satisfk this
property, the estimate Lk produced from the recursive edimation scheme has no such guaranteed
properties. The possible singularity of the estimate ~k destroys the above argument for convergence
of the tracking error and is the essence of the cliflculty  associated with proving stability.

3.5 Adaptive Control Law - Modified

Laano overcame the singularity problem for indirect adaptive control in [20] by introducing a
modification of the matrix estimate baaed on a polar decomposition. A similar approach will be
used here for direct adaptive control.

Construct the modified estimate,

~~ = ~~ + ~kRk~~ (31)

& = [0 IQ,] (32)

where some lower bound iB specified on p,

~k>~>o (33)

Here, matrix Qk in (32) is determined from a polar decomposition,

~k = QkSk (34)

where Qk is a real orthogonal matrix, and sk = ~ ~ O (cf., 13arnett [4]). Conceptually, the polar
decc)mposition can be written in term8 of the singular value decomposition i.k = UXVT as follows,

~k = (UVT)(VW7’) (35)

noting that Qk = U VT is ~m orthogonal matrix and Sk = VEVT is symmetric non-negative definite
by construction. The polar decomposition of a matrix gets its name from analogy to the polar
decomposition of a complex number z = ewg(z)  IZl ~inm Sk ~ o plays  the role of the nmntxathw

quantity 121 and any unitary matrix Q can be written in the form-eiw  with W Hermitian

Using the modified estimate (31), a modified adaptive control law can be defined aa,

Modified Adaptive Control
Uk = ~-k_lr~

~k-~ = ~k-~ [ ~k-~]

where,
~k-1 = Kk-1 +/Lk-lQk.lf:_]mk-l

~k-1 =  tk-1 +jLk-1Qk-]f:_lfk-1

[4].-

(36)

(37)

(38)

(39)
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and nlk. 1 and jk_ 1 form the partitioned Cholesky factors of Fk _ 1, i.e.,

~k.~ =xk.l~f.~ z O

~T

[# 1fk.1 = ‘1
k - l

This direct adaptive control law is depicted in Fig. 2.

Lifted Plant
r— — --—— -—.— ~ y,

(40)

(41)

u, I r--h
.
+

I

Yk-1

l[”-’””  L---

Figure 2: Stable direct adaptive periodic control law.

3,6  S t a b i l i t y  Resultf~

The main result is given next.

Theorem 1
Let the lifted plant (11 ) be controlled by the modified adaptive control (36) and MP-R.LS estimation
algorithm (24)(25), to follow a bounded trajectory llY~ll  < K. Then the signals uk and yk remain
bounded, and the tracking error go~ to zero asymptotically, i.e.,

lim lyk ‘Y~/ C O (42)
k+co

Proof: If the modified adaptive control (36) is applied to the plant (11) at each time k, the nor-
malized input prediction error (20) becomes,

u: -  uk
~k = ‘— = Qk_l?k ‘ ~k-lif

l+~k
(43)

=  Qk_l~k  -~k_l?:&~k-lRk-lFk-l~k (44)

=  Qk.l(;k  - ;;)- p~-lRk-lFk-l~k (45)

= ~;k-l(yk -  Y~)

l+~k
-  ~k_lh!k_lFk-lFk (46)
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Taking the limit of both sid~ of (46) and applying (P4) and (P8)  yields,

(47)

Since by Lemma A2 of Appendix A, tf(~~-.l) >0 is bounded away from zero, it follows from (47)
th ~t ,

lim ~ = O
k - e m  ] + T)&

(48)

Note also that,
11$k112 > j . JI:NJ

(1+ nk)2 - 2  l+rj:
(49)

where we have used the fact that 2qk < 1 + q~, Combining rundta  (48) and (49) it follows that,

(50)

Now consider convergence. of the unnormalized  tracking error &k. Using the triangle inequality, one
carI verify the following linear bound ednem condition,

=  yll$k-111  +?lltkll +Cl < CI _t C2 &i,yk I It, ] I (52)
- -

where c1 = 2~7 > v(llY~_lll+llY$ll) ~d C2 = 27. Given convergence of (50) and linear boundednem
rendition (52), the Key Technical Lemma (Goodwin and Sin [15]) ensures that,

ancl that ~k remains bounded. Boundednem  of qk implies the boundednem  of yk which together
with P3, P5, and (36) imply the boundednem  of uk. ●

Remark 2 In light of the discussion in Remark 1, the main idea behind the stability proof can be
understood completely from (46), This relation usw the modified gain ~ and hrw the extra term
Rk..lFk_l~k compared with the error (29) which aris~ from using the unmodified gain ~. This
extra term is due to the modification (31) of the parameter estimate. Somewhat remarkably, this
term vanishes by property P8 of the estimator. Since the modified edimate ~k_l is nonsingular  by
design (i.e., Lemma A2), the stability proof outlined in Remark 1 is recovered.

—

It appears that property P8 was first used for proving adaptive stability in the paper by Lozarro
and Goodwin [23], although the idea iB implicit in an earlier paper by P. de Larminat [26]. In [23], P8
follows w a property of the normalized RLS algorithm with constant trace. Although the constant
trace is dropped in the present MP-RLS algorithm, it is shown in Appendix B (ace also [7]), that
property P8 is recovered by using data normalization in combination with convergent covariance
propagation. m



4 NUMERICAL EXAMPLE

4.1 TW O  C a r t  M o d e l

lle direct adaptive control algorithm will be demonstrated on the two cart model shown in Fig. 3.
l’he  two carts have mass ml = m2 = 1 and are connected with a spring having constant k = 1. It
is desired to control the position X2 of the Becond cart by applying a force u on the first cart, where
the position Z2 is the measured variable. The transfer function in the Laplace  Transform domain is
given m,

X2(S) k—... _

(

(54)
U(8)  =  ml;----’––;--  ‘“ —iI––2  m2s+(l+fi1 )k)

A zer-hold  discretization  of the transfer function (54) with sampling time T = 1 gives the discrete-
time system,

22(2) B ( 2 )
-.— —.

= A ( z )
(55)

u(z)

where the roots of B(z) are (-8.7103, , -1, - .1148) and the roots of A(z) are (0.1559+ .9878i, 1, 1).
It is seen that the plant haa unstable double integrator dynamics, and has nonminimum-phase  zeros
on and outside of the unit circle.

k  ‘-”-”-
-c—

u + q c ) r?$

———.—— m—m.:--–--II-m:-

Figure 3: Two Cart Model

4.2 Example 1:  Direct  Adapt ive Periodic  Control

The adaptive wstimator  is initialized by ~. = O, I’. = 1 01 0.1, with d~ign parameters yk z 10-20,
Pk ~ .l/tr{~O} = 1.25 x 10-12. The carts  are initialized with positions Z1(0) = 22(0) = O and
velocities ii(O) = .1 x 10-4, &2(0)  = .3 x 10-4. The reference trajectory Y~ is chosen aa a unit
square wave with an 80 Becond period.

Simulation results are. shown in Figs. 4, 5, and 6. It is seen from Fig. 4 that the adaptively
ccmtrolled system converges during the first 1.5 cycles of the square wave reference. Fig. 5 shows
that the adaptive gains and covariance converge within the same period of time,

Even though the design parameter Pk = 1.25 x 10-12 haa been Cbosen=sma.ll  in this example,
it has a critical effect on th~ overall stability. In particular, the plot of C(Lk ) in Fig. 6 (bottom)
shows that the matrix gain Lk is initially singular (less that 10-17 for double precision), and stays
near-singular for at least 40 seconds. In contrast, the modified gain @k) shown in Fig. 6 (top),
remains bounded below for all time, as required for adaptive stability.
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Figure 4: Direct adaptive control for tw~cart model. top: position Z2 of second cart (solid), reference
trajectory Y: (dotted); bottom: control input vk

Fi~;ure 5: Direct
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Modtfed  Gain: LboI
lo’r- .-.7—..—

“~

.$””
, 0 4 1 — — - — —  1 . ,  — — —  J – . . . ..~

o 50 100 150 200 250

,.

Figure 6: Direct adaptive control forAtwo-cart  model (cent’d). top: modified adaptive gain ~(~k);
bottom: unmodified adaptive gain c(Lk  )

4.3 Exatnple 2:  Performance Considerat ions

Aside from choosing Pk and ~k positive for stability reasons, practical choices for these design param-
eters are driven by performance considerations. ~pically these parameters Bhould  be chosen small
so as to recover (in the limit), the nice transient response properties of the unmodified/unnormalized
adaptive RLS algorithm t3hOWI)  by simulation in Jakubowski et. al. [16][17].

The effect of not choosing Pk suf%ciently  small is shown by simulation and briefly analyzed. The
set-up is identical to Example 1, except Pk E 1. The ramlta are shown in Fig. 7 where it is seen
that the transient is on the order of 1042.

The poor transient performance in this case can be traced to short periods of time during which
the adaptive controller is “locally” unstable. Specifically, the time-varying closed-loop system can
be calculated as,

yk = dky...l + H~k-lY~ (56)

where,
dk = A+ ~(&.I + Pk-]Qk-ljf.lmk-1) (57)

Hence, for “local stability” the eigenvah-uw  of the closed-loop system matrix dk should  be inside the
unit circle. Since ink-l and ~k_l are factors of the covariance  Fk_~ which is chosen large  initially,
the local stability condition will be violated unlem pk_l in (57) is chosen suficienily small relative
to the covan”ance.  Scaling p to the reciprocal covariance  trace (e.g., in the first simulation we chose
fLk-1  G .l/tr{Fo}),  is a re~onably  good rule of thumb. While such Choic- are not required for
stability, they are necessary (although not suf%cient) conditions for a good transient response.

11



x IOU AdapWe Periodc  Control
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Figure 7: Simulation showing large transient due to choosing Pk >0 too large. top: position Z2 of
second cart (solid), reference trajectory Y~ (dotted); bottom: control input uk

5 CONCLUSIONS

It is shown that only knowledge of the plant order is required to
control of nonminimum  phase  systems using periodic controllers.

achieve stable direct adaptive
This relaxes requirements for

stability found in earlier direct adaptive periodic control approachezi  involving plant Cauchy  Index
cmstraints [25], or partial plant Markov parameter knowledge [5].

As a result, stability requirements for convergence of direct adaptive periodic controllers are now
orI equal footing with requirements for indirect adaptive periodic control, as atablished  in the work
of Lozarlo [20].

1 kapite theoretical stability results, there are several open issues which remain to be resolved
before the present approach can be made to work reliably in practice:

11. Reduction of adaptive transient

12. Modifications to meet actuator saturation constraints

13, Robustness to boundecl process/measurement noise

14. Robustness to model order/delay, unmodelled dynamics

Ckmcerning 11 and 12, large transients are often experienced when simulating systems with adap-
tive periodic controllers. This is partly due to the certainty equivalence property of the adaptive
control which is controlling the wrong plant  with conviction most of the time, In addition} even
the transient response in the nonadaptive case can be large due to the fast “inverse plant” nature
of the control. Unfortunately, pole-placement strategies offer little relief since poles of the lifted
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system are associated with the slow time scale and hence must be kept near the origin to maintain
reasonable performance, For the nonadaptive case, it haa been shown in [6] [8] that transients and
control signals can be significantly reduced using extended horizon liftings.  It is hoped that this
same  approach can lead to reduced transients in the adaptive case.

The algorithm in the present paper is not robust to bounded noise, and serves primarily to show
ecluivalence of stability conditions between direct and indirect approaches under ideal conditions.
Modifications similar to the deadzone in [20] are presently under consideration to address issue 13
in the direct adaptive case.

Issue 14 is perhaps the most dificult to address. The warnings contained in Goodwin and Feuer
[14] regarding generalized sampling methods are most  relevant for issue 14, since one must rely
on high frequency plant dynamics for reliable control over low frequencies. A method proposed
in Lozano [21] is applicable to overparametrization in the regulation problem, but presently has
no extension to the tracking problem. Alternative approached based on multiple model banks are
emerging, and may play an important role in the future (cf., Morse [24]).
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A APPENDIX A: Supporting Results

The whole point of Appendix A is show that the modified gain q(~k) ia bounded away from zero.
Lemma Al is used to prove Lemma A2 which contains the desired result.

I.cmma Al: Let t~e MP-RLS  algorithm (24)(25) be applied to the normalized error equation (23).
Then  the estimate Lk and its polar  factor sk in (34) are explicitly bounded from above as follows,

f,k~; < 20’. ] (Al)

Sk<fii] (A.2)

wliere,

CY A tr’{6eT} + v~ . F(FO) (A.3)

Proof: Consider the matrix inequality,

(x+ Y)(x + Y)~  < 2(xx~ + YY7) (A.4)

Letting X = ~ and Y = ’3’k in (A.4) and using definition (19) gives,

bk~; < 2(@@+ @@f) (A.5)

At this point, one can construct the following sequence of inequalities,

Here, inequality (A.6) follows from the fact that ~k~~ = Kkkf + ~k~;; Inequality (A,7) follows
from (A.5); Inequality (A.8) follows from the fact that X < tr{X}.1  for any symmetric non-negative
definite matrix X; Inequality (A.9) follows from property P5 of the estimator; and definition of u
in (A,3). This proves result, (A,l).

Using the polar decomposition (34) in (A.9) gives the relation,

Hence, for any vector y,

( A l l )

where use has been made of (A.1O) and the orthogonality  property Q~Qk = 1. Since ~ is arbitrary
in (All), one can conclude that,

S;<2CY,  I (A.12)

which giva (A.2) upon taking the square root. ●

Lemma A2: Let b. be a positive scalar such that,

LTL~bo.l>O (A.13)
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Let the MP-RLS algorithm (24)(25) be applied to normalized error equation (23). Then the gain
modification defined by (31) ensur~ that,

~:~@j$I>~ (A.14)

where,

P~2mM(~,fi;) (A.15)

a ~ tr{(lCIT}  + uo o F(J’o)
(A.16)

Proofi Define,

bk k @kT;T (A.17)
Rearranging (A,17) and using (41) gives,

L= i+ ‘/?kfk (A.19)
Applying the matrix inecludity,

(x - Y)7’(X - Y) g 2(X7’X + Y~Y) (A.20)
with choicm X = ~.k and Y = @kfk to (A.19) give%,

L TL <2.
(

~~~k + fi’/?;fik  jk
)

(A.21)

At this point one can construct the following sequence of inequditim,

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

( )=  P@ QkSk + PkQkfffk =  p@k (A.28)

Here, inequality (A.22) follows from (A.21) by using the matrix inequality XTYX  ~ x~~ . tr{y}
valid for any eymmetric  non-negative definite Y; Inequality (A.23) follows by using the definition
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of ~k in (A. 17), Cholwky  factors (40), and propertiw of the trace; Inequality (A .24) follows by
property P2 of the edirnator;  Equality (A.25) follows by substituting the polar decomposition (34);
lnequa.lity  (A.26) follows by result  (A,2) of Lemma Al; Inequality (A,27) follow8 by the definition of
pin @.15);  and equation (A.28) follows by the orthogona]ity  of Qk and the structure of the modified
g~n Lk in (39).

Using (A.13) and (A.28) gives upon squaring,

Ikarranging,  givtx the desired rault (A.14), ●

B APPENDIX El: Normalized Matrix RLS Properties

‘I’c)  simplify the presentation, the notation and results in this appendix are self-contained

Consider meamrements of the form,

Yt = @“xi; t= 1,..,, N (B.1)

where  ~“ E Rmx~ is an matrix of unknown parameters, and Yt E Rm, Xi E R~ are known
measurement and regremc~r vectors, respectively. It is desired to recursively estimate the matrix 0°,

Lemma B.1 Consider the least squaws  cost function,

m~ II CIJ =  y!j$llyi - Qxt112 + tr{(Q  - ~o)~-’(Q - @o)} (B.2)
1=1

where  F = ~T > 0. Then the minimizing solution, denoted as QN, is given by iterating from
t=] ,..., N on the following recursive equations,

E: X~Ft_l
Qt = 6:-] + ——-lr-———

l-t Xt Ft_l Xt
(B.3)

( F:_] XtX~Ft-l ; t __ ~ ~
F :  =  Ft_l - –——T—

)1 + Xt Ft-lXt  – ‘o””’
(11.4)

where Ei = Y~ - ~t_l Xt, Go = Cl. and F. = ~.

Prc~ofi ‘l’his can be proved by separating the cost into scalar LS problems and applying standard
results (cf., 13ayard  [7]), or by directly taking a matrix derivative of the cost (cf., Jakubowski  [16]),D

Theorem B.2 Consider the measurement equations (B.]) where it is assumed that the regressor is
normalized as follows,

11X,11 ~p=; t= 1,..., co (B.5)

Then the normalized matriz-parometer  RLS algorithm (B.3)(B.4)(B.5),  has the following properties,
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where  the Frobenious  norm is defined as [lXl[j  = (tr{X~.X})* and,

Proof: The discussion here extends the results in Lozan~Leal and Goodwin [23] (Theorem 2.1,
page 670-671), to the matrix parameter case.

Prc>of  of PI: Multiplying @.4)  on the right by Xi and rearranging gives,

FtX,
Ft-lX~X~Ft_lXt

= Fi_lxt  - —--,
l+X~F*_lX,

( X~Ft_lXt
=  Ft-lXi  I-  —

)

Ft_lXt=
1 -t X~Fi_lXt 1 + X~Ft_lXt

Also from @.4)  and the matrix inversion Lemma [2],

F$- 1 = FtZ\ + XtX~

Using (B.8) in RLS update law (B.3) gives,

%lXtXfFt_l
(% =  Qt_l -  – — - - – -

1 + x~Ff-lxt

Subtracting 0° from both sides of (B.12) gives,

@t_lXtX~Ft_l
a’t=a’~-~  -  —  —— - — .

1 + X~Ft-lXt

(B.9)

(B.1O)

(Ill])

(B.12)

(B.13)

(B.14)

(B.15)
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where (B. 14) follows from (B. 10), and (B. 15) follows by rearranging.
gives,

a)t = a~.1(1 - F;lF: + F:\17)

= @:_l F,L1lF;

Finally, using (B.11) in (B.15)

(B.16)

(B.17)

Multiplying both Bides of (B.17) on the right by Ft-l  gives PI, ss d~ired.

Proof of P2: Multiplying each side of PI on the right by the respective side of (B.13) (transposed)
gives the identity,

(B.18)

Using definition (B.7) in (B,18) and rearranging gives,

at.]xix~a:-l
vi = vt_l - –—---

1 + X~F$-lXt

Et E?= Vt-l -  - - — — .
l+xfl+-lxt

which proves P2-i.  Taking the trace of both sidm of (B.20) and
P2-iii follows directly from P2-ii.

(B.19)

(B.20)

using (B,7) provm P2-ii, Property

Proof of P3: Taking the minimum singular value of both sides of (B.11) gives,

(B.21)q(Ft- 1 ) = g(FtZ1l -t Xx:) 2 dK\ )

or equivalently,
1 < 1—.—— . _ _ . @.22)

Z(Ft- 1 ) -  q(FfL’1 )

Property P3 follows from (B.22) and the fact that 6(X)  = 1 /g(X  - 1 ) for any nonsingular  matrix
x.

Proof  of  P4:  Note  that Vm = limt+m ut exists since from P2 the sequence vi is monotonic
nonincreasing  and bounded below by O. Hence, rearranging P2 and summing both sides from 1 to
03 gives,

cm

x E;Et
Uo -  u~ =  —-––—

t=, 1 -t- XfFt_lXt
(B.23)

(B.24)

where (B.25) follows from result P3, Result P4 is proved by noting that
E~Et in (B.25)  is summable and hence approached zero asymptotically.

(B.25)

the nonegative sequence

18



Proof  of P5: Ilom P2, it follows that u: < UO. Using definition @.7) gives upon rearranging,

(B.27)

Crossmultiplying  by ?F(Fo)  in @.27) and using the Frobenious  norm definition gives result P5.

Proof of P6: F’rom the R.LS update @.3),

(13.28)

@.29)

where @.29)  follows from the fact that lzl/(1 + Izl) < 1, and @,30)  follows from result P3. Using
result P4 in (B.30) proves result P6 as dmired.

Proof of P 7: Before considering convergence of F’i, consider convergence of the symmetric produci
27Ftz for any specified z. From the covariance  update (B.4) it follows that,

zTFtz  = zTFt_lz  - rt_l z O (R.31)

where,

rt ~ 4 llzTFL-lxtllz_ ~— . . .
1 + X~Ft-lXt

>0 (B.32)

Since zTF~z is monotonic nonincreasing  and bounded below by zero, it converges. Note that the
ij’th entry ~ij of Ft can be always written as the asymmetric produci,

fij = e~Ft ej (B.33)

where ei and ej are unit vectors with 1‘s in the i’th and j’th elements, rtxpectively.  Convergence of
~ij follows  by writing (B.33) M,

fij = e~Ftej = ( )(ei + ej)TFt(ei -I- ej) - e~Ftei - e~F~ej)  /2 (B.34)

and by invoking the previous convergence result  for Bymrnetric products. The matrix Ft is convergent
since it is componentwise  convergent.

Proof of P8: Taking the limit t ~ co of the trace of (B.4),  and using result P7 giva,

(B.35)
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However, from P3 it follows that,

.
. .

llF,_1X,112______ > IIJ’:-IXIII: ._ > J!EHz!:
1 + X~Ft_lXt 1 + 5( F:_l)p: -  1  -t- E(Fo)p~

@.36)

Taking the limit as t + cm in (B.36) and uBing (B.35) givtw the desired rm.ilt.

Proof of P9: Rearrange result PI to give, @t = @oF~l Ft, and take the limit t * co noting that
F, - Fm by result P7.
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